Journal of Neonatal-Perinatal Medicine 6 (2013) 1–9 DOI 10.3233/NPM-1363712 IOS Press

Review Article

Efficacy and safety of probiotics in preterm infants

K. AlFaleh^{a,*} and J. Anabrees^b

^aDivision of Neonatology, Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia ^bNeonatal Care, Sulaiman Al Habib Medical Group, Riyadh, Saudi Arabia

Received 24 June 2012 Revised 18 September 2012 Accepted 23 October 2012

Abstract. Probiotics are live microbial feed supplements that beneficially affect the recipient by improving intestinal balance. In an updated systematic review, nineteen trials randomizing more than 2800 infants were included. In a meta-analysis of trial data, enteral probiotic supplementation significantly reduced the incidence of severe necrotizing enterocolitis (typical RR 0.35, 95% CI 0.24 to 0.52) and mortality (typical RR 0.55, 95% CI 0.40 to 0.74). There was no evidence of significant reduction of nosocomial sepsis (typical RR 0.89, 95% CI 0.77 to 1.03). The included trials reported no systemic infection with - supplemented probiotics. Recent data in addition to a report by the European Society for Pediatric Gastroenterology (ESPGAN) concluded probiotics could be generally considered safe.

Keywords: Probiotics, preterm, NEC, neonatal sepsis

1. Introduction

Probiotics are live microbial feed supplements that beneficially affect the host by improving intestinal balance [1]. Metchnikoff and Tissier were the first investigators to make scientific suggestions about the use of probiotics [2, 3]. Members of the genera Lactobacillus and Bifidobacterium are the most commonly used species, but not exclusively, as probiotic microorganisms and a growing number of probiotic foods are available to the consumer [4]. Probiotics are associated with a number of positive health benefits. Over the past two decades there has been a significant increase in the scientific literature addressing the efficacy of probiotic supplementation in the preterm infants. This review summarizes the available evidence on the benefits of probiotics and potential safety issues about their use in preterm babies.

2. Efficacy of probiotics

2.1. Necrotizing enterocolitis

Necrotizing Enterocolitis (NEC) is the most common, serious acquired disease of the gastrointestinal tract in preterm infants [5]. It is characterized by bowel wall necrosis of various length and depth. Bowel perforation occurs in one third of the affected infants [6]. Although 5 to 25% of cases occur in term infants, it is primarily a disease of preterm infants, with the majority of cases occurring in very low birth weight infants

^{*}Corresponding author: Dr. Khalid AlFaleh, Department of Pediatrics, Division of Neonatology, College of Medicine and King Khalid University Hospital, King Saud University, P.O. Box 7805, Riyadh 11472 Saudi Arabia. Tel.: +966 556031222; Fax: +966 14671709; E-mail: kfaleh@ksu.edu.sa.

(infants with birth weight <1500 g) [7]. NEC is categorized into three different stages, with clinical symptoms varying from feeding intolerance to severe cardiovascular compromise, coagulopathy, and peritonitis with or without pneumoperitoneum [8]. The incidence of NEC varies among countries and neonatal centers. It has been reported to affect up to 10% of very low birth weight infants (VLBW) [7].

The pathogenesis of NEC remains incompletely understood. NEC most likely represents a complex interaction of factors causing mucosal injury [9]. It is speculated that NEC occurs when two of the following three pathologic events occur coincidently; intestinal ischemia, colonization of the intestine by pathologic bacteria, and excess protein substrate in the intestinal lumen [10, 11]. Bacterial colonization is necessary for the development of NEC [12, 13]. When compared to term infants, VLBW infants at risk of NEC have abnormal fecal colonization, demonstrate a paucity of normal enteric bacterial species, and have delayed onset of bacterial colonization [14, 15].

VLBW infants with NEC have a mortality rate up to 20% [16, 17]. Approximately 27 to 63% of affected infants require surgical intervention [5]. Strictures occur primarily in the colon in more than one third of affected infants [18]. Increased rate of total parenteral nutrition (TPN) related complications and extended hospitalization have been reported [19]. Recent data from the National Institute of Child Health and Human Development Network (NICHD) suggest an increase in neurodevelopmental impairment rates among infants with NEC and sepsis [20].

Probiotic bacteria colonize the gastrointestinal tract and potentially provide benefit to the host [21]. The most frequently used probiotics are Lactobacillus and Bifidobacterium. There is increasing interest in the potential health benefits of proactive colonization of the gastrointestinal tract of preterm infants [21].

Potential mechanisms by which probiotics may protect high risk infants from developing NEC and/or sepsis include increased barrier to migrating bacteria and their products across the mucosa [22, 23], competitive exclusion of potential pathogens [24], modification of host response to microbial products [25], augmentation of Immunoglobulin A (IgA) mucosal responses, enhancement of enteral nutrition that inhibits the growth of pathogens, and up-regulation of immune responses [26].

The evidence of the efficacy and safety of probiotic supplementation in preterm infants was recently updated. Nineteen randomized trials enrolling more than 2800 preterm infants were included in the analysis of the studies were quite variable in the enrollment criteria, probiotic strain, baseline risk of NEC in the control group and trial quality (Table 1). The enteral administration of probiotics reduced the incidence of severe NEC (stage II-III in Bell's classification) with a relative risk of 0.35, (95% CI 0.24 to 0.52) and a number needed to treat (NNT) of 20 (Fig. 1).

Most of the included trials enrolled preterm infants less than 1500 g at birth; however, specific efficacy data on most vulnerable infants (ELBW) was reported in only one study with no statistical difference. However due to lack of power, a firm conclusion could not be made.

2.2. Neonatal sepsis

Nosocomial infections are also frequent complications in VLBW infants. Data from the NICHD Network demonstrated that as many as 25% of these infants have at least one or more positive blood cultures, and 5% have positive cerebrospinal fluid cultures over the course of their hospitalization [28]. Late onset sepsis is associated with an increased risk of death, neonatal morbidity and prolonged hospitalization [29, 30].

Pooled data shows a trend toward a benefit in the reduction of late onset sepsis (RR 0.89, 95% CI 0.77 to 1.03); however, this did not reach statistical significance (Fig. 2).

2.3. Mortality

The administration of probiotics resulted in an improved mortality rate (RR 0.55, 95% CI 0.40 to 0.74) with a trend toward a benefit in NEC-related mortality (RR 0.41, 95% CI 0.15 to 1.10) (Fig. 3).

2.4. Time to full enteral feeds

Probiotic administration shortened time to full feeds by approximately 4 days with a weighted mean difference of -3.96 (95% CI -4.45 to -3.48).

3. Safety of probiotics

Recently, the safety of probiotics in VLBW infants has been extensively reviewed. Although probiotics

The study	Al-Hosni 2012	Bin-Nun 2005	Braga 2011	Costalo 2003	s Da 20		Kitajima 1997	Li 200		Lin 005	Manzoni 2006
SC or MC	MC	SC	SC	SC	М	С	SC	SC		SC	SC
Method of generating randomization	Not described	Not described	А	А	No desci		Not lescribed	Uncl	ear	A	А
Allocation concealment	Not specified	Not specified	А	А	A		Not lescribed	No descri		А	Unclear
Blinding of intervention	Y	Masked	Y	Maskee	i Mas	ked	Unclear	Uncl	ear Ur	nclear	Unclear
Blinding of outcome measurement	Y	Not specified	Y	Blinded	i Blin	ded	Unclear	Uncl	ear Bl	inded	Blinded
Complete follow-up	Y	Not specified	Y	Y	Y)	No	Uncl	ear	Y	Y
	Mahatsch 2010	Millar 1993	Reuman 1986	Lin 2008	Manzoni 2009	Mohan 2006	Rot 200	0	Samanta 2009	Sari 2010	Stratiki 2007
SC or MC	SC	SC	SC	MC	MC	SC	Two co	enters	SC	SC	SC
Method of generating randomization	А	Not described	IA*	A	Α	А	А	L	СТ	А	СТ
Allocation concealment	А	Not described	IA	Α	А	Not describe	Poss d adeq	-	СТ	СТ	СТ
Blinding of intervention	Y	Masked	Masked	Y	Y	Y	Y		СТ	СТ	СТ
Blinding of outcome measurement	Y	Unclear	Blinded	Y	Y	Unclear	Y	r	СТ	Y	Y
Complete follow-up	Y	Y	Y	Y	Y	Y	Y		Y	Y	Y

 Table 1

 Characteristics of randomized controlled trials** addressing the efficacy of administered probiotics in preterm infants

A, Adequate. IA, inadequate. Y, Yes. CT, Can't tell. SC, Single Center. MC, Multi Center. *Random number charts and the last digit of patient's chart number; the next matched infant is assigned to the opposite group. *reference 27.

have been described as safe and well tolerated based on the current literature [27], there have been some concerns that this conclusion requires additional exploration. Unfortunately, data addressing the safety of probiotics are still scarce.

There is a theoretical risk of bacteremia secondary to specific enterally administered probiotic strains, though few data support this concern. Bacillus species administered as probiotics were reported to be associated with invasive disease in target populations [31]. Several microorganisms in probiotics have been isolated from patients with endocarditis, bacteremia or local infections [32–35], and infections with Lactobacillus species in infants and children have been reported [36–41]. However, none of the reported trials explicitly indicate the use of specific culture techniques to detect sepsis caused by individual probiotic organisms.

Subsequently published guidelines for the Evaluation of probiotics further emphasize the need to fully evaluate the safety of probiotics, in particular the risk of infection in subjects with compromised immunity and subjects at risk for endocarditis [4].

The French Agency for Food Safety (AFFSA) reviewed the safety of probiotics in infants. The agency recommended for safety reasons that probiotics should not be given to immunocompromised or preterm infants [42].

The Scientific Committee on Food of the European Commission also commented on the use of probiotic bacteria in food products for infants. It recommended that infant formulas with probiotic microorganisms

	Probio	tics	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.1.1 All Infants							
Al-Hosni 2012	2	50	2	51	2.0%	1.02 (0.15, 6.96)	
Bin-Nun 2005	1	72	10	73	10.2%	0.10 (0.01, 0.77)	
Braga 2011	0	119	4	112	4.7%	0.10 [0.01, 1.92]	
Costalos 2003	5	51	6	36	7.2%	0.59 (0.19, 1.78)	
Dani 2002	4	295	8	290	8.2%	0.49 (0.15, 1.61)	
Kitajima 1997	0	45	0	46		Not estimable	_
Lin 2005	2	180	10	187	10.0%	0.21 [0.05, 0.94]	
Lin 2008	4	217	14	217	14.3%	0.29 [0.10, 0.85]	
Manzoni 2006	1	39	3	41	3.0%	0.35 (0.04, 3.23)	
Manzoni 2009	0	151	10	168	10.2%	0.05 (0.00, 0.90)	
Mohan 2006	2	37	1	32	1.1%	1.73 [0.16, 18.20]	
Rougé 2009	2	45	1	49	1.0%	2.18 [0.20, 23.21]	
Samanta 2009	5	91	15	95	15.0%	0.35 (0.13, 0.92)	
Sari 2010	6	110	9	111	9.2%		
Stratiki 2007	0	38	3	31	3.9%	0.12 [0.01, 2.19]	
Subtotal (95% CI)		1540		1539	100.0%	0.35 [0.24, 0.52]	•
Total events	34		96				
Heterogeneity: Chi ² =				l² = 0%			
Test for overall effect:	Z = 5.36 ((P < 0.0	0001)				
1.1.3 High quality stu	dias						
Dani 2002	4	295	8	290	19.3%	0.49 (0.15, 1.61)	
Lin 2005	2	180	10	187	23.5%	0.21 [0.05, 0.94]	
Lin 2008	4	217	14	217	33.5%	0.29 [0.10, 0.85]	
Manzoni 2009	4 0	151	10		23.8%	0.05 [0.00, 0.90]	
Subtotal (95% CI)	0	843		862	100.0%		
Total events	10	• • •	42				· ·
Heterogeneity: Chi ² =		3 (P =		0%			
Test for overall effect:	•			0.0			
restion overall ellect.	2 - 4.02 ((i · · 0.0	0017				
1.1.4 Less than 1000	g at birth						
Al-Hosni 2012	2	50	2	51	100.0%	1.02 (0.15, 6.96)	
Subtotal (95% CI)	4	50		51	100.0%	1.02 [0.15, 6.96]	
Total events	2	V	2				
Heterogeneity: Not ap	plicable		7				
Test for overall effect:	Z = 0.02 ((P = 0.9	8)				
							Favours treatment Favours control
							ravours liealinenic ravours contio

Fig. 1. Forest plot of a meta-analysis of the efficacy of probiotics in the prevention of severe NEC in preterm infants.

should be marketed only if their benefit and safety have been evaluated according to the principles outlined by the same Committee [43].

Almost all patients presenting with probiotic microorganism sepsis in these studies have had underlying conditions predisposing them to infection, e.g. structural heart defects in case of endocarditis, or indwelling catheters in case of sepsis. In most cases of infection, the organism appears to have originated from the patient's own microflora. In a limited number of cases, the organism was thought to be related to the consumption of a commercial probiotic product containing *L. rhamnosus* [32, 34, 36–39, 40, 41, 44], Saccharomyces [45], and Bacillus [46, 47, 31]. In these patients too, serious underlying conditions were common. Cases of infection with Bifidobacterium during supplementation have not been reported. A report from Finland indicated that the increased use of Lactobacillus GG in food has not resulted in an increased incidence of

K. AlFaleh and J. Anabrees / Probiotics in preterm infants

	Probio	tics	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.3.1 Culture proven	sepsis						
Al-Hosni 2012	13	50	16	51	5.1%	0.83 [0.45, 1.54]	
Bin-Nun 2005	31	72	24	73	7.6%	1.31 [0.86, 2.00]	+
Braga 2011	40	119	42	112	13.8%	0.90 [0.63, 1.27]	
Costalos 2003	3	51	3	36	1.1%	0.71 [0.15, 3.30]	
Dani 2002	14	295	12	290	3.9%	1.15 [0.54, 2.44]	
Kitajima 1997	1	45	0	46	0.2%	3.07 [0.13, 73.32]	
Lin 2005	22	180	36	187	11.3%	0.63 [0.39, 1.04]	·
Lin 2008	40	217	24	217	7.7%	1.67 [1.04, 2.67]	—
Manzoni 2006	19	39	22	41	6.9%	0.91 [0.59, 1.40]	
Manzoni 2009	7	151	29	168	8.8%	0.27 [0.12, 0.60]	
Mihatsch 2010	17	91	20	89	6.5%	0.83 [0.47, 1.48]	
Millar 1993	0	10	0	10		Not estimable	
Rougé 2009	15	45	13	49	4.0%	1.26 [0.67, 2.34]	
Samanta 2009	13	91	28	95	8.8%	0.48 [0.27, 0.88]	
Sari 2010	29	110	26	111	8.3%	1.13 [0.71, 1.78]	
Stratiki 2007	0	41	3	36	1.2%	0.13 [0.01, 2.36]	←
Subtotal (95% CI)		1607		1611	94.9%	0.89 [0.77, 1.03]	•
Total events	264		298				
Heterogeneity: Chi ² =				; I ² = 53	3%	~	
Test for overall effect:	Z=1.52 ((P = 0.1	3)				
1.3.2 Less than 1000	-						~~
Al-Hosni 2012	13	50	16	51	5.1%	0.83 [0.45, 1.54]	
Subtotal (95% CI)		50		51	5.1%	0.83 [0.45, 1.54]	
Total events	13		16				
Heterogeneity: Not ap							
Test for overall effect:	Z = 0.59 ((P = 0.5	5)				
Total (95% CI)		1657		1662	100.0%	0.89 [0.77, 1.03]	
Total events	277	1051	314	1002	100.070	0.09 [0.11, 1.05]	•
		- 16 /0			v.		
Heterogeneity: Chi ² = Test for overall effect:	•	•		1 - 505	/0		0.1 0.2 0.5 1 2 5 10
		•		1 /0 -	0.043 12-	00/	Favours treatment Favours control
Test for subgroup diff	erences:	UNIT=1	1.06, af =	1 (P =	0.81), 1+=	U %	

Fig. 2. Forest plot of a meta-analysis of the efficacy of probiotics in the prevention of sepsis in preterm infants.

Lactobacillus bacteremia or in the proportion of Lactobacillus bacteremia among all cases of bacteremia [48].

Bacteremia associated with enterally administered probiotics was not reported in all trials enrolling preterm infants.

Several evaluations of the published literature have concluded that the risk of infection with probiotic lactobacilli or bifidobacteria is similar to that of infection with commensal strains, and that consumption of such products is a negligible risk to consumers, including immunocompromised hosts [49]. In a recent retrospective study of two Italian neonatal units, no isolation of Lactobacillus species was reported in more than 5000 surveillance and clinical cultures. The authors' chart review did not reveal any major adverse effects or intolerance attributable to probiotics despite the administration of more than 17,000 doses of Lactobacillus [50].

Other side effects in which probiotics could theoretically play a role include deleterious metabolic activity, excessive immune stimulation, and gene transfer [51]. However, the available data from preclinical and clinical evaluations do not provide any indication that such adverse effects would occur with probiotic strains currently in use. ESPGAN concluded that probiotics so far used in clinical trials could be generally considered as safe. However, surveillance for possible side effects, such as infection in high-risk groups, is lacking and is needed [52].

	Probio	tics	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
1.2.1 All cause neona	atal morta	ality					
Bin-Nun 2005	3	72	8	73	7.3%	0.38 [0.11, 1.38]	
Braga 2011	26	119	27	112	25.7%	0.91 [0.56, 1.45]	+
Dani 2002	0	295	2	290	2.3%	0.20 [0.01, 4.08]	
Kitajima 1997	0	45	2	46	2.3%	0.20 [0.01, 4.14]	
Lin 2005	7	180	20	187	18.1%	0.36 [0.16, 0.84]	
Lin 2008	2	217	9	217	8.3%	0.22 [0.05, 1.02]	
Manzoni 2006	5	39	6	41	5.4%	0.88 [0.29, 2.64]	
Manzoni 2009	6	151	12	168	10.5%	0.56 [0.21, 1.45]	
Mihatsch 2010	2	91	1	89	0.9%	1.96 [0.18, 21.19]	
Reuman 1986	1	15	3	15	2.8%	0.33 [0.04, 2.85]	
Rougé 2009	2	45	4	49	3.5%	0.54 [0.10, 2.83]	
Samanta 2009	4	91	14	95	12.7%	0.30 [0.10, 0.87]	
Subtotal (95% CI)		1360		1382	100.0%	0.55 [0.40, 0.74]	♦
Total events	58		108				
Heterogeneity: Chi ² =	11.06, df	= 11 (P	= 0.44);	l² = 1%			
Test for overall effect:	Z = 3.97 ((P < 0.0	001)				
1.2.2 NEC reported m	nortality						
Bin-Nun 2005	0	72	3	73	25.8%	0.14 [0.01, 2.75]	
Dani 2002	0	295	2	290	18.7%	0.20 [0.01, 4.08]	
Kitajima 1997	0	45	2	46	18.4%	0.20 [0.01, 4.14]	
Lin 2008	2	217	3	217	22.3%	0.67 [0.11, 3.95]	
Mihatsch 2010	1	91	0	89	3.8%	2.93 [0.12, 71.10]	
Sari 2010	0	110	1	111	11.1%	0.34 [0.01, 8.17]	
Subtotal (95% CI)		830		826	100.0%	0.41 [0.15, 1.10]	•
Total events	3		11				
Heterogeneity: Chi ² =	2.68, df=	5 (P =	0.75); l ² =	: 0%			
Test for overall effect:	Z=1.78 ((P = 0.0	8)				
		-					
							0.001 0.1 1 10 1000 Favours treatment Favours control
							Favours treatment Favours control

Fig. 3. Forest plot of a meta-analysis of the efficacy of probiotics in the prevention of mortality in preterm infants.

4. Current controversy

The most important question that needs to be addressed; Is it time to change practice and adopt the use of probiotics as a standard of care in preterm infants?

This issue has been widely discussed among experts and has resulted in two schools of thought. The first suggests waiting until further precise data of efficacy and safety in ELBW infants are available in addition to the determination of the most effective preparation and dose to be utilized [53].

The second is in favor of change in practice based on significant reduction in severe NEC and all cause mortality. This group believes that a delay in adopting effective treatment will have serious consequences [54]. We believe that based on the available evidence for probiotic use in the preterm infant, the number of included infants, and the narrow confidence interval, that a change in practice is warranted at this stage. Parents of preterm infants should be informed of the current evidence if placebo controlled trials are to continue [27].

5. Future questions

Further evaluation that addresses the optimum type of probiotic, the dosage, and the effect in ELBW is still needed. Currently there are a number ongoing randomized trials and one trial has been terminated recently for statistical reasons (http://clinicaltrials.gov) (Table 2). Although the ongoing trials may not answer

Study	Participants	Interventions Outcomes	Outcomes
Costeloe (UKISRCTN05511098)	Before 31 completed weeks of gestation.	The placebo is corn starch alone.	Primatry: Episodes of blood stream infection, NEC, Death before discharge discharge Secondary: Many composite outcomes, Number of positive blood culture with an organism recognised as a skin commensal. Number of babies with episodes of blood stream infection with organisms other than skin commensals, Number of babies with isolates of organisms, babies with a positive culture of B breve BBG from any normally sterile site, days of antibiotics and/or anti-fungals per baby, babies colonised with the administered probiotic strain, Stool flora, Age at achieving full enteral nutrition, Change of weight, BPD, Hydrocephalus and/or intraparenchymal cysts, ROP, and Length of stay.
Lozano (Colombia NCT00727363)	BWT < 2000 g Stable < 48 hours of age	Enrolment 751 Lactobacillus reuteri DSM 17938 at a dose of 10 ⁸ cfus in 5 drops of a commercially available oil suspension once per day until discharge. Placebo 5 drops of an available oil suspension	Primary: Deaths and episodes of nosocomial sepsis Secondary: Necrotizing enterocolitis This study has been terminated.
Tobin (Australia ACTRN12607000144415)	BWT<1500 g and <32) weeks gestation	1,100 babies Probiotic combination (ABC Dophilus Infant Powder, contains 1×10^9 of total organisms, consisting of 3 bacterial strains (Bifidobacteriuminfantis, <i>Bifidobacterium bifidus</i> , <i>Streptococcus thermophilus</i>).	Primary: The incidence of late onset sepsis Secondary: The incidence of necrotizing enterocolitis, death, length of the primary admission, courses of antibiotics, time to full oral feeds, Growth, Atopic eczema, food allergies, and wheeze from term until 12 months corrected age.
Cooper (South Africa NCT00977912) Moral (USA NCT01181791)	BWT 800–1500 g Tolerating enteral feeding within 48 hours BWT 700–1500 g Survive >3 days	Enrolment 1000 Probiotic supplementation vs Supplement: Milk containing placebo Enrolment 120 Lactobacillus reuteri vs Placebo	Primary: NEC onset Secondary: Antibiotic administration and stool microbiology Primary: Time to reach full feeds, Days to reach full feeds from the day feeds were started Secondary: Intestinal colonization, PCR quantification of lactobacillus reuteri in the stools, Intestinal immunological response, Ouantification immunological markers in the stools.
Punnahitananda (Thailand NCT01340469)	Gestational age <35 weeks, BWT <1500 g Survived first 3 days of life	Enrolment 160 Probiotics vs Placebo	Primary: incidence of nosocomial infections 28 days or until discharge, Nosocomial infections. Secondary: incidence of NEC 28 days or until discharge, feeding tolerance, the volume of feeding on day 7,14,21, and 28 of study, time to full enteral feeding, time required to reach full feeding at 150 mJ/kg/dav.
Kusuda (Japan NCT01375309)	BWT<1500g	Enrolment 246 Bifidobacterium bifidum vs Placebo contains dextrin.	Primary: enternal feeding exceeded 100 mJ/kg/day or date of death from any cause, Death or unsuccessful of establishing enteral feeding exceeded at 100 mJ/kg/day before day 28 of age is considered failure to reach primary endpoint. Secondary: SD scores of BW and head circumference at discharge, NEC or sepsis, Intestinal flora

Table 2 Ongoing randomized controlled trials of the efficacy of probiotics in preterm infants the remaining questions, these studies will report on as many infants as have been enrolled in the last published meta-analysis [27]. These trials will undoubtedly help refine our assessment of risks and benefits of probiotic administration.

Financial disclosure statement

The authors do not have any potential or actual interests relevant to the topics discussed in this manuscript.

References

- [1] Fuller R. Probiotics in man and animals. J Appl Bacteriol 1989;66(5):365-78.
- [2] Metchnikoff E. Lactic acid as inhibiting intestinal putrefaction In: The prolongation of life: Optimistic studies. W. Heinemann, London 1907:161-83.
- [3] Tissier H. Traitement des infections intestinalespar la méthode de la florebactérienne de l'intestin. C R Soc Biol 1906;60:359-61.
- [4] Food and Agriculture Organization/World Health Organization (FAO/WHO). Joint FAO/WHO Working Group Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada 2002.
- [5] Lee JS, Polin RA. Treatment and prevention of necrotizing enterocolitis. Semin Neonatol 2003;8:449-59.
- [6] Kafetzis DA, Skevaki C, Costalos C. Neonatal necrotizing enterocolitis: An overview. Curr Opin Infect Dis 2003;16:349-55.
- [7] Kosloske AM. Epidemiology of necrotizing enterocolitis. Acta Paediatr 1994;396:2-7.
- [8] Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, Brotherton T. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg 1978;187:1-7.
- [9] Neu J. Necrotizing enterocolitis: The search for a unifying pathogenic theory leading to prevention. Pediatr Clin North Am 1996;43:409-32.
- [10] Kosloske AM. Pathogenesis and prevention of necrotizing enterocolitis: A hypothesis based on personal observation and a review of the literature. Pediatrics 1984;74:1086-92.
- [11] La Gamma EF, Browne LE. Feeding practices for infants weighing less than 1500 G at birth and the pathogenesis of necrotizing enterocolitis. Clin Perinatol 1994;21:271-306.
- [12] Kosloske AM. A unifying hypothesis for pathogenesis and prevention of necrotizing enterocolitis. J Pediatr 1990;117:S68-S74.
- [13] Musemeche CA, Kosloske AM, Bartow SA, Umland ET. Comparative effects of ischemia, bacteria, and substrate on the pathogenesis of intestinal necrosis. J Pediatr Surg 1986;21:536-8.
- [14] Goldmann DA, Leclair J, Macone A. Bacterial colonization of neonates admitted to an intensive care environment. J Pediatr 1978;93:288-93.
- [15] Gewolb IH, Schwalbe RS, Taciak VL, Harrison TS, Panigrahi P. Stool microflora in extremely low birthweight infants. Arch Dis Child Fetal Neonatal Ed 1999;80:F167-F73.

- [16] Holman RC, Stoll BJ, Clarke MJ, Glass RI. The epidemiology of necrotizing enterocolitis infant mortality in the United States. Am J Public Health 1997;87:2026-31.
- [17] Caplan MS, Jilling T. New concepts in necrotizing enterocolitis. Curr Opin Pediatr 2001;13:111-5.
- [18] Ricketts RR. Surgical treatment of necrotizing enterocolitis and the short bowel syndrome. Clin Perinatol 1994;21:365-87.
- [19] Bisquera JA, Cooper TR, Berseth CL. Impact of necrotizing enterocolitis on length of stay and hospital charges in very low birth weight infants. Pediatrics 2002;109:423-8.
- [20] Stoll BJ, Hansen NI, ms-Chapman I, Fanaroff AA, Hintz SR, Vohr B, Higgins RD. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 2004;292:2357-65.
- [21] Millar M, Wilks M, Costeloe K. Probiotics for preterm infants? Arch Dis Child Fetal Neonatal Ed 2003;88:F354-F8.
- [22] Orrhage K, Nord CE. Factors controlling the bacterial colonization of the intestine in breastfed infants. Acta Paediatr Suppl 1999;88:47-57.
- [23] Mattar AF, Drongowski RA, Coran AG, Harmon CM. Effect of probiotics on enterocyte bacterial translocation *in vitro*. Pediatr Surg Int 2001;17:265-8.
- [24] Reid G, Howard J, Gan BS. Can bacterial interference prevent infection? Trends Microbiol 2001;9:424-8.
- [25] Duffy LC. Interactions mediating bacterial translocation in the immature intestine. J Nutr 2000;130:432S-36S.
- [26] Link-Amster H, Rochat F, Saudan KY, Mignot O, Aeschlimann JM. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol Med Microbiol 1994;10:55-63.
- [27] AlFaleh K, Anabrees J, Bassler D, Al-Kharfi T. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev 2011;16(3):CD005496.
- [28] Stoll BJ, Gordon T, Korones SB, Shankaran S, Tyson JE, Bauer CR, et al. Late-onset sepsis in very low birth weight neonates: A report from the National Institute of Child Health and Human Development Neonatal Research Network. J Pediatr 1996;129:63-71.
- [29] Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: The experience of the NICHD Neonatal Research Network. Pediatrics 2002;110(2 Pt 1):285-91.
- [30] Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Changes in pathogens causing earlyonset sepsis in very-low-birth-weight infants. New Engl J Med 2002;347:240-7.
- [31] Richard V, Van derAuwera AP, Snoeck R, Daneau D, Meunier F. Nosocomial bacteremia caused by Bacillus species. Eur J Clin Microbiol Infect Dis 1988;7:783-5.
- [32] Husni RN, Gordon SM, Washington JA, et al. Lactobacillus bacteremia and endocarditis: Review of 45 cases. Clin Infect Dis 1997;25:1048-55.
- [33] Piarroux R, Millon L, Bardonnet K, et al. Are live Saccharomyces yeasts harmful to patients? Lancet 1999;353: 1851-2.
- [34] Rautio M, Jousimies-Somer H, Kauma H, et al. Liver abscess due to a Lactobacillus rhamnosus strain indistinguishable from L. rhamnosusstrain GG. Clin Infect Dis 1999;28:1159-60.
- [35] Ishibashi N, Yamazaki S. Probiotics and safety. Am J Clin Nutr 2001;73:465S-70S.

- [36] Sharpe ME, Hill LR, Lapage SP. Pathogenic lactobacilli. J Med Microbiol 1973;6:281-6.
- [37] Bayer AS, Chow AW, Betts D, et al. Lactobacillemia: Report of nine cases. Important clinical and therapeutic considerations. Am J Med 1978;64:808-13.
- [38] Broughton RA, Gruber WC, Haffar AA, et al. Neonatal meningitis due to Lactobacillus. Pediatr Infect Dis 1983;2:382-4.
- [39] Kalima P, Masterton RG, Roddie PH, et al. Lactobacillus rhamnosus infection in a child following bone marrow transplant. J Infect 1996;32:165-7.
- [40] Brook I. Isolation of non-sporing anaerobic rods from infections in children. J Med Microbiol 1996;45:21-6.
- [41] Thompson C, McCarter Y, Krause PJ, et al. Lactobacillus acidophilus sepsis in a neonate. J Perinatol 2001;21:258-60.
- [42] AFSSA (AgenceFrançaise de SécuritéSanitaire des Aliments). Alimentation Infantile et Modification de la Flore Intestinale (working document) 2003.
- [43] Scientific Committee on Food. European Commission. Health and Consumer Protection Directorate-General. Report of the Scientific Committee on Food on the Revision of Essential Requirements of Infant Formulas and Follow-up Formulas 2003.
- [44] Mackay AD, Taylor MB, Kibbler CC, et al. Lactobacillus endocarditis caused by a probiotic organism. Clin Microbiol Infect 1999;5:290-2.
- [45] Hennequin C, Kauffmann-Lacroix C, Jobert A, et al. Possible role of catheters in Saccharomyces boulardii fungemia. Eur J Clin Microbiol Infect Dis 2000;19:16-20.

- [46] Spinosa MR, Wallet F, Courcol RJ, et al. The trouble in tracing opportunistic pathogens: Cholangitis due to Bacillus in a French hospital caused by a strain related to an Italian probiotic? Microb Ecol Health Dis 2000;12:99-101.
- [47] Oggioni MR, Pozzi G, Balensin PE, et al. Recurrent septicemia in an immunocompromised patient due to probiotic strains of Bacillus subtilis. J Clin Microbiol 1998;36:325-6.
- [48] Salminen MK, Tynkkynen S, Rautelin H, et al. Lactobacillus bacteremia during a rapid increase in probiotic use of Lactobacillus rhamnosus GG in Finland. Clin Infect Dis 2002;35:1155-60.
- [49] Borritello SP, Hammes WP, Holzapfel W, et al. Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis 2003;36:775-80.
- [50] Manzoni P, Lista G, Gallo E, et al. Routine Lactobacillus rhamnosus GG administration in VLBW infants: A retrospective, 6-year cohort study. Early Hum Dev 2011;87(Supp 1):S35-S8.
- [51] Marteau P. Safety aspects of probiotic products. Scand J Nutr 2001;45:22-4.
- [52] ESPGAN. J Pediatr Gastroenterol Nutr 2004;38(4).
- [53] Soll R. Probiotics: Are We Ready for Routine Use? Pediatrics 2010;125:1071-2. PMID:20421256
- [54] Tarnow-Mordi W, Wilkinson D, Trivedi A, et al. Probiotics reduce all-cause mortality and necrotizing enterocolitis: It is time to change practice. Pediatrics 2010;125:1068-70. PMID:2040393